ID the Future Intelligent Design, Evolution, and Science Podcast
Topic

replication

single-helix-rna-epigenetics-concept-stockpack-adobe-stock
Single helix RNA, Epigenetics concept

Minimal Replication Fidelity: Another Problem for the RNA World Hypothesis

The RNA world is proposed by some to explain how early life began before DNA. But is RNA capable of maintaining a life-friendly self-replication rate? On this ID The Future, host Andrew McDiarmid welcomes back Dr. Jonathan McLatchie to discuss another headache for the RNA world scenario. Before a trial and error process like natural selection can even get started, self-replicating molecules must have a minimal accuracy rate to copy genetic material effectively. The required fidelity rate is estimated to be 2%. Any error rate higher than that results in error catastrophe for organisms. The average error rate in RNA copying is estimated to be around 17%, vastly higher than the estimated maximum error threshold for survival. McLatchie explains the implications of this for chemical evolutionary theories like the RNA world hypothesis. He also explains how a Bayesian approach to this evidence can provide us with the likeliest explanation for the origin of biological life. "The sorts of features that we observe in life are not particularly surprising if we suppose that a mind is involved," says McLatchie. But things like minimal self-replication fidelity are wildly surprising on a naturalistic hypothesis. Read More ›
no shortcut long road
Empty open highway in Wyoming

An Origin-of-Life Poser: No Short Cut to Energy-Harnessing

On today’s ID the Future, Stairway to Life co-author Rob Stadler and host Eric Anderson delve deeper into Challenge to Origin of Life: Energy Harnessing, the latest video in the Long Story Short intelligent design video series. Could the first cell have been much simpler than any current cell, making it easier for it to emerge through blind natural forces on the early Earth? Stadler and Anderson surface one big problem with that idea: in experiments to make relatively simple cells even simpler, the cells inevitably become less robust and adaptable. These simpler cells must be coddled to survive. But the first cell on earth would have been anything but coddled. It would have had no source of glucose and been battered by all and sundry. (Plus, even these artificially simple cells are still extraordinarily sophisticated compared to human technology.) What about reports of a fungus near the Chernobyl nuclear accident that can feed off radiation? As Stadler notes, while this is an intriguing discovery, funguses are much more complex than anything being proposed as the first living cell, and the fungus undoubtedly possesses sophisticated energy-harnessing and processing machinery. The bottom line: any viable, self-reproducing cell, including the first one in the history of life, must have an energy-harnessing system already in place to survive, and such systems are necessarily enormously sophisticated. Stadler argues that we know enough about what natural forces can and cannot do to know that natural causes alone could not make this leap from non-life to first life. Another kind of cause was required. Tune in to learn more.