ID the Future Intelligent Design, Evolution, and Science Podcast

Jonathan McLatchie

Businessman running upon a red arrow

Bayesian Probability and Intelligent Design: A Beginner’s Guide

If the phrase "Bayesian calculus" makes you run for the hills, you're not alone! Bayesian logic can sound intimidating at first, but if you give it a little time, you'll understand how useful it can be to evaluate the evidence for design in the natural world. On this ID The Future, Dr. Jonathan McLatchie gives us a beginner's guide to Bayesian thinking and teaches us how it can be used to build a strong cumulative case for intelligent design, as well as how we can use it in our everyday lives. Enjoying the podcast? Leave a written review at Apple Podcasts to help new listeners find the show! Read More ›
Single helix RNA, Epigenetics concept

Minimal Replication Fidelity: Another Problem for the RNA World Hypothesis

The RNA world is proposed by some to explain how early life began before DNA. But is RNA capable of maintaining a life-friendly self-replication rate? On this ID The Future, host Andrew McDiarmid welcomes back Dr. Jonathan McLatchie to discuss another headache for the RNA world scenario. Before a trial and error process like natural selection can even get started, self-replicating molecules must have a minimal accuracy rate to copy genetic material effectively. The required fidelity rate is estimated to be 2%. Any error rate higher than that results in error catastrophe for organisms. The average error rate in RNA copying is estimated to be around 17%, vastly higher than the estimated maximum error threshold for survival. McLatchie explains the implications of this for chemical evolutionary theories like the RNA world hypothesis. He also explains how a Bayesian approach to this evidence can provide us with the likeliest explanation for the origin of biological life. "The sorts of features that we observe in life are not particularly surprising if we suppose that a mind is involved," says McLatchie. But things like minimal self-replication fidelity are wildly surprising on a naturalistic hypothesis. Read More ›